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A Stretched Exponential Bound on Time Correlations
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We construct Markov approximations to the billiard flows and establish a stretched
exponential bound on time-correlation functions for planar periodic Lorentz gases
(also known as Sinai billiards). Precisely, we show that for any (generalized) Hölder
continuous functions F, G on the phase space of the flow the time correlation function
is bounded by const · e−a

√|t |, here t ∈ R is the (continuous) time and a > 0.
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1. INTRODUCTION

A billiard is a mechanical system in which a point particle moves freely (by inertia)
at constant (unit) speed in a compact domain D and bounces off its boundary ∂D
according to the classical law “the angle of incidence is equal to the angle of
reflection.” The dynamical properties of billiards are determined by the shape of
∂D, and they may vary from completely regular (integrable) to strongly chaotic.
The main class of chaotic billiards was introduced by Sinai in 1970, see Ref. 30,
who considered containers defined by

D = Tor2 \ ∪p
i=1Bi , (1.1)

where Tor2 is the unit 2-torus and Bi ⊂ Tor2 disjoint strictly convex domains
(scatterers) with C3 smooth boundary whose curvature nowhere vanishes.

By lifting the billiard table D from Tor2 to its universal cover R
2 one gets a

billiard in an unbounded table where the particle bounces off a periodic array of
fixed obstacles (scatterers); this system is known as a periodic Lorentz gas. If the
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free path between collisions is uniformly bounded, then the system is said to have
finite horizon. We always assume finite horizon in this paper.

The phase space of the billiard system is the compact 3D manifoldM = D ×
S1, and the billiards dynamics generates a flow �t :M → M. It is a Hamiltonian
(contact) flow, and it preserves Liouville (uniform) measure µ on �.

At every reflection the velocity vector changes by the rule v+ = v− −
2 〈v, n〉 n, where v+ and v− refer to the postcollisional and precollisional veloci-
ties, respectively, n denotes the inward unit normal vector to ∂D at the reflection
point q ∈ ∂D, and 〈·〉 denotes the scalar product. The family of postcollisional
velocity vectors with footpoints on ∂D makes a 2D manifold called the collision
space:

� = {x = (q, v): q ∈ ∂D, 〈v, n〉 ≥ 0}.

The billiard flow induces the return map T : � → � called the billiard map or
collision map.

Standard coordinates on � are the arc length parameter r on the boundary ∂D
and the angle ϕ ∈ [−π/2, π/2] between the vectors v and n. Note that 〈v, n〉 =
cos ϕ. The map T : � → � preserves smooth measure dν = cν cos ϕ dr dϕ, where
cν is the normalizing factor.

For x ∈ � denote by τ (x) the distance of the free path between the collision
points x and T (x). The flow �t can be represented as a suspension flow over the
map T : � → � under the ceiling function τ (x). In the suspension flow, every point
y ∈ M is a pair y = (x, t), where x ∈ � is the latest collision (in the past) along
the trajectory of y and t ∈ (0, τ (x)) is the time elapsed since that collision. There
is a natural projection π�:M → � defined by π�(x, t) = x . Our finite horizon
assumption means that τ (x) is bounded above.

Sinai (30) proved that the billiard map T is hyperbolic. We denote by W u(x) and
W s(x) the unstable and stable manifolds through the point x ∈ �, respectively.
These are smooth curves, so we will call them fibers. The derivatives of the
map T are unbounded (they blow up near grazing collisions, where ϕ = 0), and
Sinai proposed(6) a refinement of stable and unstable fibers to enforce distortion
bounds (we define it in Sec. 3). The resulting (shorter) fibers are said to be
homogeneous. We always consider homogeneous stable and unstable fibers, unless
stated otherwise.

Each fiber has a finite (and uniformly bounded) length, and there are plenty of
arbitrarily short fibers, but the following tail bound holds. For every x ∈ � denote
by ru(x) and r s(x) the distance from x to the nearest endpoints of the (longest)
unstable fiber W u(x) and stable fiber W s(x), respectively. Then for some constants
C, a > 0 and all ε > 0

ν
(
x ∈ �: ru(x) < ε

) ≤ Cεa, (1.2)
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and a similar estimate holds for r s(x). Such bounds are standard for hyperbolic
maps with singularities. (20) For our billiards, in fact, (1.2) holds with a = 1, see
(Ref. 13 Sec. 4.12). Moreover, for any unstable fiber (or more generally, unstable
curve(13)) W u ⊂ � we have

	W u {x ∈ W u : r s(x) < ε} ≤ Cε (1.3)

where 	W u denotes the Lebesgue measure on W u , (see Ref. 13 Sec. 5.12).
The partition of � into unstable fibers is measurable, and the conditional

measures on unstable fibers are absolutely continuous and called u-SRB mea-
sures (here SRB stands for Sinai, Ruelle, and Bowen who studied such measures
for Axiom A diffeomorphisms, (3,27,31)) see a detailed presentation in (Ref. 13
Chapter 5). Similarly, we call the conditional measures on stable fibers s-SRB
measures.

The flow �t is also hyperbolic. We denote by Wu(x) and Ws(x) the unsta-
ble and stable fibers through the point x ∈ M. (Generally, we will use ‘script’
characters M, W , etc., to denote objects related to the flow �t and regular Latin
characters for objects related to the map T .) The partitions of M into unstable
and stable fibers are measurable, and the corresponding conditional measures on
those fibers are called u-SRB and s-SRB measures, respectively. Estimates similar
to (1.2) and (1.3) hold for the flow as well.

Sinai (30) proved that the map T and hence the flow �t are ergodic, mixing
and K-mixing, see Ref. 13 for a recent presentation of his results. The mixing
property of the flow is equivalent to the decay of correlations. Given two functions
F, G:M → R the time correlation function is defined by

CF,G(t) =
∫

M
(F ◦ �t ) G dµ −

∫

M
F dµ ·

∫

M
G dµ.

The flow is mixing if and only if CF,G(t) → 0 as t → ∞ for all F, G ∈ L2
µ(M).

The rate of the decay of correlation (the speed of convergence of CF,G(t) to
zero) is an important characteristic of the flow and plays a role in physics applica-
tions. For arbitrary observables this speed cannot be controlled, but for reasonably
smooth observables (and Hölder continuity of F, G is usually sufficient) a certain
rate can be guaranteed. One expects that correlations for the billiard flow decay
exponentially fast, (2,14) but currently we are unable to prove this. We obtain a
weaker (stretched exponential) bound on correlations.

The reason why the flow correlations are hard to study is the (natural) lack
of hyperbolicity in the flow direction (the time one map �1 is only partially
hyperbolic). Even for smooth hyperbolic flows bounds on correlations have been
established fairly recently. (10,16,17,22,23) In Ref. 10, Markov approximations were
used and a (suboptimal) stretched exponential bound on correlations was derived
for Anosov flows on 3D manifolds. This method was improved in Ref. 22, where
the same suboptimal bound was extended to multidimensional Anosov flows. In the
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later papers (16,17,23) operator techniques were applied and an optimal exponential
bound was obtained, though under some more stringent conditions.

In the context of singular flows (including billiard flows) much less is achieved
so far. An exponential decay of correlations was proven for a very special case of
‘open flows,’ (32) where the particle bounces off finitely many scatterers in the open
plane with ‘no eclipse’ condition (the latter effectively eliminates the influence
of singularities). For generic Sinai billiards it is only shown that correlations
decay faster than any power function (this property is often referred to as a ‘rapid
mixing’ or ‘super-polynomial decay of correlations’), see Ref. 25. This last result
only applies to functions that are smooth in the direction of the flow, which is not
the case for some physically interesting functions, such as position and velocity
of the particle.

As opposed to the flow, the billiard map T : � → � is known to enjoy expo-
nential decay of correlations. (11,33) This fact implies certain statistical properties
of the flow �t , such as Bernoulliness, (18) Central Limit Theorem (CLT), Weak
Invariance Principle (WIP), and well as Almost Sure Invariance Principle (ASIP),
see Refs. 6,12,24. But bounds on correlations for the flow �t cannot be derived
from those for the map T .

Here we obtain a stretched exponential bound on correlations for the billiard
flow �t ; our bound is perhaps less than optimal (as it is widely believed that
correlations decay exponentially), but it is stronger that the super-polynomial
bound of Ref. 25 and it holds for a much larger class of observables: the so called
generalized Hölder continuous functions defined next. Given F :M → R, x ∈ M,
and r > 0 we put oscr (F, x) = supB F − inf B F , where B = Br (x) is the ball of
radius r centered on x . Now F is said to be generalized Hölder continuous if there
is α > 0 (generalized Hölder exponent) such that

‖F‖α: = sup
r

r−α

∫

M
oscr (F, x) dµ(x) < ∞.

Every Hölder continuous and piecewise Hölder continuous function is generalized
Hölder continuous. (10) Lastly we put

varα(F) = ‖F‖α + sup
M

F − inf
M

F.

Here is our main result:

Theorem 1.1. Let �t :M → M be a Lorentz gas billiard flow (with finite hori-
zon) and F, G:M → R two generalized Hölder continuous functions. Then

|CF,G(t)| ≤ c varα(F) varα(G) e−a
√|t |.

Here c, a > 0 depend on α and the billiard flow only.
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As a consequence one gets the following equidistribution property. LetWu ⊂
M be a smooth unstable curve of length |Wu | and m the uniform probability
measure on it. Denote by mt = �t m its image at time t .

Corollary 1.2. Let F :M → R be a Hölder continuous function. Then for all
t > 0

∣
∣∣∣

∫

M
F dmt −

∫

M
F dµ

∣
∣∣∣ ≤ |Wu |−1c′ varα(F) e−a′√t ,

where c′, a′ > 0 depend on α and the billiard flow only.

Proof: Let U = Uε(Wu) denote the ε-neighborhood of Wu . We can foliate U by
stable manifolds Ws of length ∼2ε, except for a subset U∗ ⊂ U where the stable
manifolds happen to be too short; we have µ(U∗) = O(ε3) due to the estimate
(1.3) for the flow (the value of ε will be determined later). Now we fix a smooth
function G ≥ 0 whose support is a slightly larger domain than U and such that∫
M G dµ = 1 and its integral over every stable curve Ws foliating U \ U∗ does

not depend on Ws . It is easy to choose G so that sup G = O
(
ε−2|Wu |−1

)
and

‖G‖α = O(ε−α), so that varα(G) = O
(
ε−2|Wu |−1

)
. Now we apply Theorem 1.1

and note that the set �t (U \ U∗) will be in the ε-neighborhood of �t (Wu), thus
∣∣∣∣

∫

M
F dmt −

∫

M
F dµ

∣∣∣∣ ≤ c varα(F) varα(G) e−a
√|t | + Cε|Wu |−1varα(F)

where the last term accounts for the loss of the measure due to U \ U∗. Now we
choose ε = e− 1

3 a
√

t and complete the proof. �

This corollary can also be extended to measures m that are abso-
lutely continuous and have the so called ‘dynamically Hölder continuous
density.’ (13,15) We also note that the equidistribution itself implies certain bounds
on correlations. (13,15)

One may wonder why we only get a stretched exponential bound on correla-
tions, instead of an exponential (optimal) one. There are two types of techniques
used to estimate correlations for hyperbolic systems. One is based on ‘coarse-
graining’ where the phase space is partitioned into coarse ‘atoms’ and the dynam-
ics is approximated by a Markov chain. These techniques are inherently too crude
to produce optimal bounds on correlations, see also Refs. 6,8. There exist much
finer techniques using functional analysis tools (Perron-Frobenius operator) that
can achieve optimal bounds on correlations, but they are very sensitive to little
details and often unable to cope with various unpleasant features (singularities) of
the dynamics. It appears that the fine techniques cannot handle billiard flows yet,
but the crude ‘coarse-graining’ methods (popular in physics (7,26)) are just flexible
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enough for this purpose. The ‘only’ price we pay is the non-optimality of the
correlation bounds.

A related issue is the difference between smooth (Anosov and Axiom A)
flows and singular billiard flows. In the smooth case, finite Markov partitions exist
and they do a fine job—many constructions are relatively simple and elegant.
In billiard flows, singularities are a major source of trouble—in many cases we
have to divide their vicinities into fractal-like necklaces, thus our constructions
become cumbersome and overcomplicated. We combine here the methods of other
papers (6,10,12,13,15) to handle billiard singularities, in all cases we are trying to
suppress billiard-specific technical details but describe our ideas clearly.

2. H-STRUCTURE

Here we describe our main construction. Its idea is derived from a classical
proof, due to Sinai, (30) of the K-mixing property for billiard flows. Take an unstable
fiber, Wu ⊂ M, for the billiard flow �t . The union S = ∪x∈WuWs(x) of stable
fibers intersecting Wu has measure zero, but the union U = ∪y∈SWu(y) of the
unstable fibers crossing S has a positive measure, and this fact implies the K-
mixing property by a general argument, (30) see also (Ref. 13, Chapter 6).

We will refine this construction as follows. First, we can take only sufficiently
long stable fibers lying close to each other. We take stable fibers Ws(x) for points
x ∈ Wu in a small ball-like neighborhood around some point x0 ∈ Wu , and,
likewise, unstable fibers Wu(y) for points y in a small ball around some point
y0 ∈ Ws(x0). Let RH be the distance between x0 and y0 along Ws(x0). Denote by
B1 and B2 the above balls around x0 and y0, respectively, and by rH � RH their
common radius. In addition, we can only take stable fibers Ws(x) that stick out of
those two balls by at least L H , and unstable fibers Wu(y) that stick out of the ball
B2 by at least L H in both directions, here L H � RH is a constant.

Second, we run our construction ‘backwards.’ Fix one of the above fibers
Wu(y). For every z ∈ Wu(y) ∩ B2 we take the stable fiber Ws(z) that sticks out
of B2 by at least L H in both directions; then for every w ∈ Ws(z) ∩ B1 we take
the unstable fiber Wu(w) that sticks out of B1 by at least L H in both directions (of
course, if all these fibers exist). Denote by Vy the union of the fibers Wu(w). We
mark the fiber Wu(y) if µ(Vy) > 0. We can assume that the union of our marked
fibers {Wu(y)} has positive measure, too.

Lastly, we can find a subset of marked fibers Wu(y), whose union we denote
by V2, such that (i) the intersection V1 = ∩y∈V2 Vy has positive measure, and (ii)
the union of the fibers Wu(y) ⊂ V2 has positive measure, too.

Since our measure µ is proportional to the volume in M and stable (unstable)
fibers make measurable partitions of M, it can be shown by standard measure-
theoretic arguments that the sets V1 and V2 will have positive measure for some
points x0, y0 and some small RH and rH .
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Summarizing the above properties, we obtain:

Proposition 2.1. (H-structure) There are two (uncountable) families of unstable
fibers, Wu

α , α ∈ A, and Wu
β , β ∈ B, such that

(H1) their unions V1 = ∪Wu
α and V2 = ∪Wu

β are measurable sets of positive
measure;

(H2) for every Wu
α and Wu

β there exists a stable fiber, Ws
αβ , that intersects both

Wu
α and Wu

β ;
(H3) the points xαβ = Wu

α ∩ Ws
αβ and xβα = Wu

β ∩ Ws
αβ lie in two small balls

(B1 and B2, respectively) of radius rH ; all the fibers Wu
α , Wu

β , and Ws
αβ

stick out of B1 and B2 by at least L H in both directions.

Here rH � RH � L H , and RH is the distance between the centers of the balls B1

and B2.

This structure resembles the letter ‘H’ with two thin bundles of parallel
unstable fibers joined by a thin bundle of stable fibers. The crucial property of this
structure is that every Wu

α is joined (coupled) with every Wu
β .

We can provide the following ‘high density’ of unstable fibers of the H-
structure, by reducing the sets V1 and V2, if necessary:

(H4) There is a small constant sH > 0 such that for every α ∈ A there is an sα ∈
[0, sH ] such that on the surface �[sα−sH ,sα ](Wu

α ∩ B1) the points belonging
to the set V1 make a subset of ‘high density’ – its area at least 0.99 times
the area of the entire surface (in the inner Riemannian metric on it). The
same holds for every β ∈ B.

Here 0.99 can be changed to any number below 1. We used Bowen’s notation
�[a,b](A) = ∪b

t=a�
t (A) for a < b and A ⊂ M.

For any α, β and any point x ∈ Wu
α close to xαβ = Wu

α ∩ Ws
αβ we denote by

u the distance between x and xαβ and by τ αβ(u) the temporal distance between
the fibers Wu

β and Ws(x), i.e. the (unique) small number satisfying �ταβ (x)(Wu
β ) ∩

Ws(x) �= ∅. Of course, the function τ α,β(u) is defined at u only if Ws(x) is long
enough to intersect the surface �[−rH ,rH ]Wu

β , hence its domain is a Cantor-like
subset of R. The following is a standard fact, see (Refs. 21, Lemma 5.1) and (13
Sec. 6.11).

Lemma 2.2. (Lipschitz regularity of the temporal distance) There are positive
constants 0 < d < d̄ < ∞ such that

du ≤ |τ α,β(u)| ≤ d̄u (2.1)

for all α, β and all u where the function ταβ(u) is defined.
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The fact that τ α,β (u) �= 0 ensures the K-mixing property of the billiard flow,
see (Ref. 13, Chapter 6). The linear bounds (2.1) (especially the lower bound) are
essential for our estimates on correlations.

We can guarantee an abundance of points x ∈ Wu
α near xαβ for which Ws(x)

crosses the surface �[−rH ,rH ]Wu
β (i.e., where the function τ αβ is defined) by further

reducing the sets V1 and V2, if necessary. More precisely, let Wu0
α ⊂ Wu

α denote a
subset of points for which the stable fiber Ws(x) extends by at least RH + L H in
the direction of B2 and by at least L H in the opposite direction.

(H5) There is a small constant εH > 0 such that for every ε < εH and every
pair Wu

α , Wu
β

	
(
Wu0

α ∩ Bε(xαβ)
)
/	

(
Wu

α ∩ Bε(xαβ)
) ≥ 0.99,

and this ratio approaches 1 as ε → 0. Here Bε(xαβ) denotes the ball
of radius ε centered on the point xαβ = Wu

α ∩ Ws
αβ and 	 the Lebesgue

measure on Wu
α .

This property can be easily ensured with the help of Lebesgue density points
of the subsets {xαβ : β ∈ B} ⊂ Wu

α .
Let {Ws

γ }, γ ∈ G, denote the family of all stable fibers passing through both
balls B1 and B2 and extending beyond them by at least L H . The property (H5)
ensures that each fiber Ws

αβ is a sort of ‘density point’ in the family {Ws
γ }.

We denote by H0 the above H-structure (it consists of two families of unstable
fibers, {Wu

α } and {Wu
β }, and a family of stable fibers {Ws

γ }). Since the image of
each fiber under the flow �τ , at least for small τ , is also a fiber, then Hτ = �τ (H0)
for any small τ , say |τ | ≤ rH , is also an H-structure, it has all the same properties
as H0, with the balls B(τ )

k = �τ (Bk) replacing Bk , k = 1, 2. Thus we get a one-
parameter family of H-structures.

We also denote by H1
0 = V1 and H2

0 = V2 the unions of unstable fibers in the
two families {Wu

α } and {Wu
β }. Then Hk

τ = �τ (Hk
0), for k = 1, 2, will be the unions

of the corresponding unstable fibers in the H-structure Hτ .
In the H-structure Hτ every unstable fiber W u

1 ⊂ H1
τ is coupled with every

unstable fiber W u
2 ⊂ H2

τ by a stable fiber. But all these fibers are located in a tiny
part of the phase space M. Next we will use the H-structures to couple images of
arbitrary unstable fibers Wu ⊂ M.

Let Wu ⊂ M be an unstable fiber and νu denote the u-SBR probability
measure on it. For any t > 0 let νu

t be the image of νu on Wu
t = �t (Wu). The set

Wu
t is a finite or countable union of unstable fibers, Wu

t,i , i ≥ 1, and the measure
νu

t conditioned on each Wu
t,i coincides with the u-SBR measure on Wu

t,i .
One may expect (based on the K-mixing property of �t ) that the set Wu

t
is asymptotically dense in M, as t → ∞, and the measure νu

t weakly converges
to the invariant measure µ (this is actually true, but we will not use this fact
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here). In particular, some components Wu
t,i may come arbitrary close to the set

Hk
τ (here k = 1 or 2 and |τ | < rH ) of our H-structure Hτ . We are interested in the

components Wu
t,i such that

(W1) dist
(
Wu

t,i , Hk
τ

) ≤ C�λt
�;

(W2) the curve Wu
t,i sticks out of the ball B(τ )

k by at least L H in both directions.

Here C� and λ� are hyperbolic constants, i.e. such that for any points x, y on
the same stable fiber dist(�t x,�t y) ≤ C�λt

� for all t > 0. The union of such
components Wu

t,i we denote by Wu
t (Hk

τ ).

Remark 2.3. The conditions (W1) and (W2) imply that Wu
t,i is close to Hk

τ ‘all

the way’ in the ball B(τ )
k , i.e. there exists an unstable fiber W ⊂ Hk

τ such that

the curves Wu
t,i ∩ B(τ )

k and W ∩ B(τ )
k are (Cλt

�)-close in the Hausdorff metric for
some constant C > 0 (we can put C = 2C�).

The existence (and abundance) of W u
t,i for large t is guaranteed by the fol-

lowing:

Proposition 2.4. Given the family of H-structures {Hτ } described above, there
are positive constants aH > 0, bH > 0, and dH > 0 such that for any |τ | < rH ,
k = 1, 2, any unstable fiber Wu ⊂ M, and any

t > t0(W u): = aH

∣∣ln |Wu |∣∣ + bH

there is a measurable set S(Wu
t , Hk

τ ) ⊂ [0, sH ] such that

(i) for any s ∈ S(Wu
t , Hk

τ ) we have νu
t+s

(
Wu

t+s(Hk
τ )

) ≥ dH ;
(ii) 	

(
S(Wu

t , Hk
τ )

) ≥ 0.98sH , where 	 stands for the Lebesgue measure on the
interval [0, sH ].

Here 0.98 can be changed to any number below 1 (but this might require
replacing 0.99 in (H4) with a constant closer to 1).

Remark 2.5. Obviously, we have

S
(
Wu

t , Hk
τ

) = S
(
Wu

t−τ , Hk
0

)

and for every s ∈ S(Wu
t , Hk

τ ) = S(Wu
t−τ , Hk

0) we have

Wu
t+s

(
Hk

τ

) = Wu
t−τ+s

(
Hk

0

)

for small τ .
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According the the above remark, it is enough to prove Proposition 2.4 for
τ = 0, and its proof is given in Appendix.

Next let Wu
1 and Wu

2 be a pair of unstable fibers. By Proposition 2.4,
if t is large enough, then some components of Wu

t+s1,1
= �t+s1 (Wu

1 ) for s1 ∈
S(Wu

t,1, H1
0) will be close to H1

0 and some components ofWu
t+s2,2

= �t+s2 (Wu
2 ) for

s2 ∈ S(Wu
t,2, H2

0) will be close to H2
0. Since both sets S(Wu

t,1, H1
0) and S(Wu

t,2, H2
0)

have high density on the interval [0, sH ], we can pick s ∈ S(Wu
t,1, H1

0) ∩
S(Wu

t,2, H2
0).

Corollary 2.6. Let Wu
1 ,Wu

2 ⊂ M be two unstable fibers. Then for every

t > max{t0
(
Wu

1

)
, t0

(
Wu

2

)} (2.2)

there exists s ∈ [0, sH ] such that

νt+s,k

(
Wu

t+s,k

(
Hk

0

)) ≥ dH (2.3)

for both k = 1, 2. Equivalently,

νt,k

(
Wu

t,k

(
Hk

−s

)) ≥ dH for k = 1, 2 (2.4)

In other words, given two unstable fibers of size ≥ ε, their future images
at any time t > aH | ln ε| + bH contain a certain fraction (measured by dH > 0)
of components such that every component of the image of the first fiber can be
‘almost’ joined (coupled) with every component of the image of the second fiber
by a stable fiber (meaning that the coupling stable fiber misses our components by
less than Cλt

�).
The advantage of (2.4) over (2.3) is that the coupling time t is arbitrary,

whereas t + s in (2.3) depends on the pair Wu
1 ,Wu

2 .
Lemma 2.2 also ensures a certain stability of the connecting stable fiber

W s
γ joining two components W u

t,1,i ⊂ �t (W u
1 ) and W u

t,2, j ⊂ �t (W u
2 ) under small

perturbations: if we replace W s
γ with another stable fiber W s

γ ′ that crosses W u
t,1,i a

distance δ from W s
γ , then W s

γ ′ will miss W u
t,2, j by at most O(δ).

3. SOLID AND CANTOR RECTANGLES

Markov partitions (and their variations) are useful in the studies of general
smooth hyperbolic maps3,27−29,61 and specific hyperbolic billiards. (5,6,33) Atoms
(building blocks) of such partitions are called rectangles (or parallelograms).

For linear automorphisms of a 2D torus, these atoms are true rectangles or
parallelograms. (1) For Anosov maps in 2D they are open domains, each bounded
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by two unstable and two stable fibers (28,29) (in higher dimension their boundary is
necessarily very irregular (4)). For generic Axiom A diffeomorphisms and billiard
maps these atoms are complicated Cantor-like objects. In this section we recall
necessary definitions and facts.

A solid rectangle Q ⊂ � is a closed domain bounded by two unstable fibers
and two stable fibers (here we allow non-homogeneous fibers). We call these fibers
u-sides and s-sides of Q, respectively. If an unstable (stable) fiber W crosses both
s-sides (resp., u-sides) of Q, we say that W fully crosses Q. Any closed set R ⊂ �

with the property

x, y ∈ R =⇒ ∅ �= [x, y]: = W s(x) ∩ W u(y) ∈ R

is called a (Cantor) rectangle; it is always a closed nowhere dense (Cantor-like)
set. Let z ∈ R and C = W u(z) ∩ R and D = W s(z) ∩ R. Then

R = [C, D] = {[x, y]: x ∈ C, y ∈ D},
and for every w ∈ R there is a unique representation w = [x, y], where x ∈ C and
y ∈ D. Thus R has a direct-product structure.

Given a rectangle R ⊂ �, we denote by Q(R) the minimal solid rectangle
containing R (we call it the hull of R). Given a solid rectangle Q, we denote by
R(Q) the maximal rectangle contained in Q (it is made by points of intersection
of all unstable fibers fully crossing Q with all stable fibers fully crossing Q).

We will only deal with rectangles of positive measure. We have ν(R) > 0 if
and only if for any (and hence, for every) point z ∈ R we have νu(W u(z) ∩ R) > 0
and νs(W s(z) ∩ R) > 0 (as usual, νu and νs are the u-SRB and s-SRB measures
on the corresponding curves). We call

ρu(R) = inf
x∈R

νu
(
W u(x) ∩ R

)

νu
(
W u(x) ∩ Q(R)

)

the (minimal) u-density of R. Similarly the (minimal) s-density ρs(R) is defined
and we call

ρ(R) = min{ρu(R), ρs(R)} (3.1)

the (minimal) density of the rectangle R. Note that 0 ≤ ρu,s(R) < 1; if ρ(R) is
close to one, then the rectangle R is “very dense.,” i.e. it occupies nearly the entire
available area of its hull Q(R). In particular, we have

1 − ν(R)

ν(Q(R))
≥ const

(
1 − ρ(R)

)
. (3.2)

The abundance of rectangles in � is guaranteed by the bound (1.2).
Let R be a rectangle. A rectangle R1 ⊂ R is called a u-subrectangle if

W u(x) ∩ R = W u(x) ∩ R1 for any point x ∈ R1. Similarly, R2 ⊂ R is an s-
subrectangle if W s(x) ∩ R = W s(x) ∩ R2 for any x ∈ R2.
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Given a rectangle R, its image T n(R) is a finite or countable union of rectan-
gles {Ri }. For n > 0, their preimages T −n(Ri ) are s-subrectangles in R. For n < 0,
they are u-subrectangles in R.

Given two rectangles R1 and R2 and n ≥ 1, we say that T n(R1) intersects R2

properly if the set T n(R1) ∩ R2 is a u-subrectangle in R2 and the set R1 ∩ T −n(R2)
is an s-subrectangle in R1. Proper intersection is characteristic for atoms of Markov
partitions.

We recall that homogeneous fibers are defined by using the so called homo-
geneity strips in �, whose boundaries consist of countably many parallel lines

S = ∪k≥k0{(r, ϕ): |ϕ| = π/2 − k−2}
(here k0 ≥ 1 be a large constant), see Refs. 6,11–13. Technically, the space �

is divided along these lines into countably many strips and the map T becomes
discontinuous at points mapped onto S (and the map T is naturally discontinuous
at points mapped onto S0 = ∂� = {|ϕ| = π/2}). Now Sn = ∪n

k=0T −k(S ∪ S0) is
the set of points where the map T n is discontinuous.

The following fact proven in (Ref. 6, Sec. 3.2) shows that rectangles have a
direct product structure not only in a topological sense, but (approximately) in a
measure-theoretic sense:

Proposition 3.1. Let R be a rectangle such that Q(R) ∩ (Sn ∪ S−n) = ∅, i.e.
such that the maps T ±n are continuous on Q(R). Then there exists a probability
measure νR on R such that

(a) it is almost uniform with respect to the measure ν restricted to R:
∣∣∣
dνR

dν
− ν(R)

∣∣∣ ≤ cθn (3.3)

for some constants c > 0 and θ ∈ (0, 1).
(b) νR is a product measure, i.e. for any u-subrectangle R1 ⊂ R and s-

subrectangle R2 ⊂ R we have νR(R1 ∩ R2) = νR(R1) νR(R2).

In what follows we have many exponential bounds similar to (3.3), and we will
denote by ci > 0 and θi ∈ (0, 1) various constants whose values are not important
(they depend on the billiard table D alone).

For any curve W ⊂ � we denote by 	W the (non-normalized) Lebesgue
measure on W and by JW T n(x) the Jacobian (the ‘expansion factor’) of the map
T n restricted to W at the point x ∈ W . The following bound is proved in (Ref. 15,
Lemma A6) for any unstable curve W ⊂ � and n > 0

∫

W
|JW T n(x)|1/3 d	W ≤ c1θ

−n
1 . (3.4)
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Lemma 3.2. The ε-neighborhood of the set Sn ∪ S−n has measure

ν
(
Uε(Sn ∪ S−n)

) ≤ c2θ
−n
2 ε1/4.

Proof: It is enough to prove this for the ε-neighborhood of Sn . For any curve
S ⊂ Sn there exists a unique k ∈ [0, n] such that T k(S) is either a singularity
curve for T or a homogeneity line. Fix a k ∈ [0, n] and denote by S

(k) ⊂ Sn

the union of all the corresponding curves. Let {W̃ u} be a smooth foliation of �

by unstable curves; it induces a smooth foliation of ε-neighborhood Uε(S(k)) by
unstable curves W u

α of length O(ε) terminating on (but not crossing) S
(k). Note

that the map T k expands each W u
α almost uniformly (due to the distortion bounds),

and we denote JW u
α
T k = maxx∈W u

α
JW u

α
T k(x). Integrating the estimate (3.4) over

the chosen foliation {W̃ u} of � gives

ν
(∪W u

α :JW u
α
T k ≥ B

) ≤ const · θ−k
1 B−1/3 (3.5)

for any B > 0. We set B = ε−3/4θ
−3k/4
1 , then the right hand side of (3.5) is

O(ε1/4θ
−3k/4
1 ). The curves W u

α where JW u
α
T k < B are mapped by T k into the

(εB)-neighborhood of the union of the singularity curves for T and the homogene-
ity lines. That neighborhood has measure O(εB) = O(ε1/4θ

−3k/4
1 ), see (Ref. 13,

Sec. 5.5); now summing up over k = 0, 1, . . . , n proves the lemma with θ2 =
θ

3/4
1 . �

Corollary 3.3. Let θ3 = θ8
2 ; then ν

(
Uθn

3
(Sn ∪ S−n)

) ≤ c2θ
n
2 .

4. SPECIAL COLLECTIONS OF SOLID RECTANGLES

Here we construct a finite collection of solid rectangles in � that will be a
basis for subsequent Markov approximations to the billiard map (and flow).

Proposition 4.1. For any large n ≥ 1 there exists a finite collection of solid
rectangles ϒn = {Q1, . . . , Q J } such that

(a) we have int Q j ∩ int Q j ′ = ∅ for any j �= j ′;
(b) diam(Q j ) ≤ θn

3 for every j = 1, . . . , J and J ≤ θ−n
4 ;

(c) the image of each u-side (s-side) of every rectangle Q j under T −1 (resp.,
under T ) lies either on a u-side (resp., an s-side) of another rectangle Q j ′ ,
or outside their union Un = ∪ j Q j .

(d) Un ∩ (Sn ∪ S−n) = ∅ and ν(� \ Un) ≤ c2θ
n
2 ;

Proof: In fact, there are plenty of such collections and their construction is quite
flexible. For any large m ≥ 1, and small ε < ε0(m), the so-called pre-Markov
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partition ξ of � was constructed in (Refs. 5, Sec. 3) and (6, Sec. 4.2) with the
following properties:

(M1) Atoms of ξ are closed curvilinear polygons, each bounded by some stable
fibers, some unstable fibers (both may be non-homogeneous), as well as
some pieces of singularity curves of Sm ∪ S−m ; accordingly we divide
the union of all their boundaries ∂ξ = ∪A∈ξ ∂ A into three parts: ∂ξ =
∂sξ ∪ ∂uξ ∪ ∂singξ ; in fact ∂singξ = Sm ∪ S−m ; and atoms that are not
adjacent to Sm ∪ S−m are solid rectangles;

(M2) we have T (∂sξ ) ⊂ ∂sξ and T −1(∂uξ ) ⊂ ∂uξ ;
(M3) The diameters of the atoms do not exceed ε;
(M4) The number of atoms of this partition does not exceed εb for some constant

b > 0.

It remains to take a pre-Markov partition ξ with some fixed m ≥ 1 (independent of
n) and ε = θn

3 and remove the atoms of ξ whose closure intersects the set Sn ∪ S−n .
Observe that Un = ∪ j Q j covers � \ Uθn

3
(Sn ∪ S−n), so we can use Corollary 3.3

to complete the proof of (d). �

Remark 4.2. We can assume that θ4 < θ2 and eliminate all Q j ∈ ϒn such that
ν(Q j ) < θ2n

4 . Their total measure is ≤ θn
4 , due to clause (b), hence they will make

an insignificant addition to the measure bound in clause (d). For the remaining
rectangles, each u-side and s-side is longer than const·θ2n

4 .

As we said, there are plenty of collections ϒn and their construction is quite
flexible. Now we specify one that ‘agrees’ with the flow �t so that the images of
‘typical’ stable fibers of the H-structures Hτ (Sec. 2) at time t = gn (here g > 0
is a constant) are comparable (in size) to the solid rectangles Q j that their orbits
are crossing at that time. More precisely, for any |τ | < rH there exists a subset of
stable fibers Wn,τ = {Ws

γ } in the H-structure Hτ such that

µ
(∪Ws

γ :Ws
γ /∈ Wn,τ

) ≤ c5θ
n
5 (4.1)

and for every fiber Ws
γ ∈ Wn we have

c|Q j |s ≤ |π�

(
�gn

(
Ws

γ

))| ≤ c−1|Q j |s (4.2)

whenever Q j ∩ π�

(
�gn(Ws

γ )
) �= ∅. Here |Q j |s is the maximal length of stable

fibers in Q j and c > 0 is a small constant.
We first observe that stable fibersWs

γ ∈ Hτ contract under the flow at variable
speed, so that when the slowest ones are shrunk by the flow to the size of the solid
rectangles Q j ’s which they cross, the faster ones may be already much smaller, in
fact their size may be an exponentially small fraction of the size of Q j ’s that they
cross. In order to ensure (4.2) we will take an arbitrary collection ϒn satisfying
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Proposition 4.1 and partition some Q j ’s (which are crossed by faster stable fibers)
into smaller subrectangles.

For smooth Anosov flows(10) the collection ϒn = {Q1, . . . , Q J } was a
Markov partition of � and its refinement along the above lines was constructed
in (Ref. 10, Sec. 15) based on symbolic dynamics. Here we ‘translate’ the ‘sym-
bolic’ argument of Ref. 10 into geometric terms. We only sketch the procedure
suppressing some technical details.

First, since Hτ = �τ (H0), it will be enough to deal with H0 only. If we project
all fibers Ws

γ ∈ H0 onto �, we get a collection of stable fibers for the map T , call
them {W s

γ }. They have an approximately constant length, say |W s
γ | ≈ L ′

H . The
orbits of points x ∈ Ws

γ during the time interval (0, t), i.e. {�s x}t
s=0, cross the

base � a certain number of times, mx,t , which satisfies t/τmax ≤ mx,t ≤ t/τmin.
We fix g so that λ

g/τmax

T = θ2
4 . Then the projection of the image �gn(Ws

γ ) onto the

base � has length ≤ 2CT L ′
Hθ2n

4 . We can assume that L ′
H is small enough so that

all those projections will be shorter than the s-side of the smallest solid rectangle
Q j ∈ ϒn , according to Remark 4.2.

Now denote m = [gn/τmin] + 1 and d = gn/m. Consider the time moments
ti = id for i = 0, . . . , m. Observe that d < τmin, so that every trajectory crosses
� at most once during each time interval [ti , ti+1]. We will construct a sequence
of collections ϒ

(i)
n of solid rectangles, starting with ϒ

(0)
n = ϒn , inductively, so that

the last one, ϒ
(m)
n , will be the one for which (4.1)–(4.2) will hold. Each collection

ϒ
(i)
n will be a refinement of the previous one ϒ

(i−1)
n .

Suppose ϒ
(i)
n is already constructed so that the fibers �tiWs

γ satisfy the
lower bound in (4.2). Moreover, assume that the length of the projection of each
fiber �tiWs

γ onto � is at least 1
2 |Q j |s whenever it crosses Q j . (For i = 0 this is

obviously true, as our fibers in H0 have length O(1) and the rectangles Q j ∈ ϒn

are shorter than θn
3 .) Now move all the fibers �tiWs

γ further under the map �d

(this will produce the fibers �ti+1Ws
γ ).

Let Wi = �tiWs
γ be one such fiber and Wi+1 = �ti+1Ws

γ its image. Let the

projection Wi = π�(Wi ) cross a solid rectangle Q ∈ ϒ
(i)
n . If there is no collisions

during the time interval [ti , ti+1] on the trajectory of Ws
γ , then the projection

Wi+1 = π�(Wi+1) will coincide with Wi , and we will not refine Q (at this step).
If there is a collision, then Wi+1 may be (much) smaller than Wi (as stable fibers
do contract!), and it will cross another solid rectangle Q′ ∈ ϒ

(i)
n . Due to Propo-

sition 4.1 (c), T (Q) ∩ Q′ is a u-subrectangle in Q′. Now if Wi+1 is smaller than
half of the s-side of Q′, we divide Q′ into two or three u-subrectangles along the
u-sides of T (Q) ∩ Q′. Then Wi+1 will be at least half the s-size of the new, smaller
solid rectangle T (Q) ∩ Q′. We do this refinement for every fiber �tiWs

γ and thus

obtain a collection ϒ
(i+1)
n .
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Observe that solid rectangles Q ∈ ϒ
(i+1)
n have s-sides lying on the s-sides of

Q ∈ ϒ
(i)
n (hence, on the s-sides of ϒ

(0)
n , by induction), but their u-sides may be

inside some elements of ϒ
(i)
n ; however those u-sides are the images of some of

the u-sides of Q ∈ ϒ
(i)
n under T . Therefore the collection ϒ

(i+1)
n will satisfy the

‘Markov condition’ (c) of Proposition 4.1 if so does ϒ
(i)
n . Obviously, our refinement

will ensure the lower bound in (4.2).
The upper bound in (4.2) will be ensured automatically, as we explain next.

First recall that by our choice of g at time tm the image of every stable fiber will be
shorter than the smallest s-side of the original solid rectangles Q j ∈ ϒn = ϒ

(0)
n .

Now if the upper bound in (4.2) fails, then a fiber W = �tmWs
γ would have a

projection W = π�(W) onto � that would cross a rectangle Q ∈ ϒ
(m)
n whose

s-side is much smaller than |W |. But such a rectangle would have been created
at some time ti ≤ tm during our refinement procedure. Thus some stable fiber
Wi = �tiWs

γ ′ would have a projection Wi = π�(Wi ) that would cross Q and at
the same time been shorter than half the s-side of Q. In that case |Wi | � |W |,
hence |Wi | � |W|. On the other hand, if we pull both fibers back under the map
�−ti , then the smaller fiber Wi returns to H0, i.e. it recovers its size to about
the constant value L ′

H . But the pre-images of both fibers move next to each
other (because their projections W and Wi are linked by some unstable fibers in
Q). Hence both fibers are expanded under �−ti by about the same factor due to
the distortion bounds. Therefore |�−tiW| � L ′

H . But this is impossible because
tm ≥ ti and �−tmW ∈ H0, hence |�−tmW| ≈ L ′

H .

Next we verify that the constructed collection ϒ
(m)
n of solid rectangles has all

the properties claimed in Proposition 4.1. The clauses (a), (c), (d) and the bound
on the diameter in the clause (b) obviously hold. To ensure an exponential upper
bound on the number J (m) of rectangles ϒ

(m)
n we use the large deviation lemma

proved in Ref. 15 (Proposition A.5):

Lemma 4.3. (Large deviations) There is a constant A = A(D) > 1 such that
ν
(
x ∈ �: |JW s (x)T m(x)| < A−m

) ≤ c6θ
m
6 for all m ≥ 1.

Let m = gn/τmin. We define Wn,0 to be the collection of stable fibers Ws
γ ∈

H0 whose projections onto � contract by less than A−m during the first m iterations
of T (i.e. |JW s T m | > A−m on such fibers). Then (4.1) will hold due to the above
lemma. On the other hand, the images of our fibers �gn(Ws

γ ) will have length

≥ const · A−gn/τmin , hence the s-sides of the refined solid rectangles Q ∈ ϒ
(m)
n

will be longer than const· A−gn/τmin . Therefore

ν(Ri ) ≥ c7θ
n
7 and J (m) ≤ c−1

7 θ−n
7 (4.3)
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with θ7 = θ2
4 A−g/τmin . Note that the u-sides and s-sides of Q ∈ ϒ

(m)
n are necessarily

longer than const· θn
7 .

There are a few ‘final touches’ we should make. First, observe that for any
fiber W = Ws

γ ∈ Wn,0 its image �ti (W) has length ≥ const· A−ti /τmin , hence it
will exceed θn

3 for all ti ≤ c′n, where c′ = τmin| ln θ3|/ ln A > 0 is a constant. Thus
the actual refinement of ϒn starts at time ti ≥ c′n, i.e. for i ≥ c′n/d. It may happen
that some stable fibers �ti (Ws

γ ) cross � (as their points may experience a collision
at time ti ), which would complicate our refinement procedure. But the size of
such fibers is exponentially small for every i ≥ c′n/d, hence their union lies in
an exponentially small neighborhood of �. Therefore the measure of their union
is exponentially small, and we can simply remove all of them from Hn,0 to avoid
possible complications.

Second, the projection of some stable fiber �ti (Ws
γ ) onto � may intersect

solid rectangles Q ∈ ϒ
(i)
n only partially, as a significant portion of that projection

may land in � \ ∪Q. But we can simply require that portion be exponentially
small (relative to the length of the whole projection). Indeed, the union of fibers
violating this requirement will have an exponentially small measure, so they can
be just removed from Hn,0.

Third, it is essential that the projections of the fibers �tm (Ws
γ ) onto � are not

cut by u-sides of the solid rectangles Q ∈ ϒ
(m)
n in their middle parts corresponding

to the images of the ‘bars’ in the H-structures. Recall that the middle part makes a
small fraction of each stable fiber (as L H � RH , cf. Sec. 2), so there is a plenty of
room for the u-sides of Q’s to cut our fibers. On the other hand, the construction
of ϒn is quite flexible, as was remarked in the proof of Proposition 4.1. In fact
the boundaries ∂uξ and ∂sξ of the pre-Markov partition ξ were constructed in
(Ref. 5, Sec. 3) by first positioning some initial unstable and stable curves fairly
arbitrarily in � and then adjusting them iteratively to ensure the Markov property.
This freedom can be used to place the curves in ξ u so that they avoid undesirable
intersections with the projections of our fibers in their middle parts. This calls
for certain modifications in the constructions of (Ref. 5, Sec. 3) that are rather
technical, so we leave them out.

From now on we discard the original collection ϒ
(0)
n and denote by ϒn =

{Q1, . . . , Q J } the refined collection ϒ
(m)
n . We will assume that ϒn satisfies Propo-

sition 4.1 (where the value of θ4 must be reset according to (4.3)).

5. MARKOV APPROXIMATIONS

Here we recall and modify the construction of Markov approximations for
the billiard map T : � → � developed in Refs. 6,8. For every pair of integers
N > n > 0 we will construct a finite partition Rn,N = {R0, R1, . . . , RI } of �. Its
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atoms R1, . . . , RI will be small (Cantor) rectangles, and the remaining atom R0

will be a ‘large’ open dense subset of �, but its measure will be small.
Let ϒn = {Q1, . . . , Q J } be the collection of solid rectangles constructed in

the previous section. For every Qi consider the (Cantor) rectangle

Ri = R(Qi ) ∩ (∩N
k=−N T k(∪ j Q j )

)
. (5.1)

Proposition 5.1. If ν
(
T k(Ri ) ∩ R j

) �= 0 for some 1 ≤ i, j ≤ I and 1 ≤ k ≤ N,
then T k(Ri ) intersects R j properly. Moreover,

ν
(
� \ ∪i Ri

) ≤ c8 Nθn
8 . (5.2)

Proof: The properness of the intersections is verified by a direct inspection,
which is fairly standard (6, Sec. 4) Then, ν(∪J

j=1 Q j \ ∪J
j=1 R(Q j )) ≤ const· θan

3
due to Proposition 4.1 (c) and (1.2). Now (5.2) follows from Corollary 3.3 and
Proposition 4.1 (d). �

In our further calculations, N does not exceed n3, so that Nθn
i , N 2θn

i , etc.,
are always small numbers.

Given θ ∈ (0, 1), we say that a rectangle Ri in (5.1) is θ -dense if

ν(Ri )/ν(Q(Ri )) ≥ 1 − θn.

Lemma 5.2. For some θ9 > 0 the union of θ9-dense rectangles Ri has measure
≥ 1 − c9 Nθn

9 .

Proof: Let θ9 = θ
1/2
3 . If Ri does is not θ9-dense, then ν

(
Qi \ Ri

) ≥ θn
9 ν(Qi ).

Summing up over all such rectangles and using (5.2) proves the lemma. �

We will only keep θ9-dense rectangles. Then, according to (3.2), every such
rectangle will satisfy

ρ(Ri ) ≥ 1 − const · θn
9 , (5.3)

i.e. our rectangles have ‘high density’ on their stable and unstable fibers. Fur-
thermore, we will only keep rectangles whose measure is ≥ θ2n

4 ; the union of the
abandoned rectangles will have measure ≤ θn

4 according to Proposition 4.1 (b).
Let R1, . . . , RI denote the remaining rectangles and Rn,N = {R0, R1, . . . , RI } the
(mod 0) partition of � with R0 = � \ ∪I

i=1 Ri . We emphasize that

µ(R0) ≤ c10 Nθn
10 and µ(Ri ) ≥ θ2n

4 ∀i ≥ 1. (5.4)
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Proposition 5.3. The following ‘short-memory’ approximation holds:2

ν(T i1 R j1 ∩ T i2 R j2 ∩ · · · ∩ T il−1 R jl−1/T il R jl ∩ . . . ∩ T ik R jk )

= ν(T i1 R j1 ∩ · · · ∩ T il−1 R jl−1/T il R jl ) · (1 + �) (5.5)

where the ‘remainder term’ � satisfies |�| ≤ c9θ
n
9 for all rectangles

R j1 , . . . , R jk ∈ Rn,N and all 1 ≤ i1 < i2 < · · · ik ≤ N (note that R0 is not a rect-
angle, so it is not allowed here).

Proof: This follows from the properness of intersection (Proposition 5.1) and
the approximation of ν by a product measure in every rectangle (Proposition 3.1);
see a detailed proof in (Ref. 6, Sec. 4). �

In Refs. 8,10, a Markov approximation for the map T : � → � based on any
partition of M into subsets {R0, R1, . . . , RI } was defined to be a probabilistic
stationary Markov chain with states {0, 1, . . . , I }, transition probabilities

πi j = ν(R j/T Ri ) = ν(R j ∩ T Ri )/ν(Ri ) (5.6)

and the stationary distribution

pi = ν(Ri ). (5.7)

This is, perhaps, one of the simplest realizations of the popular physical concept
of ‘coarse-graining’ of phase space, see, e.g., discussions in Refs. 7,26.

The following quantity was introduced in Refs. 8,10 to characterize the
discrepancy between the above Markov approximation and the actual N iterations
of T :

χN : = sup
L≤N

∑

i0,i−1,...,i−L

|ν(Ri0/T Ri−1 ∩ · · · ∩ T L Ri−L ) − ν(Ri0/T Ri−1 )|

×ν(T Ri−1 ∩ · · · ∩ T L Ri−L ). (5.8)

The properties of our Markov approximation Rn,N = {R0, R1, . . . , RI } en-
sure that

χN ≤ c9θ
n
9 + c8 Nθn

8 ≤ c10 Nθn
10.

It was proved in (Ref. 8, Sec. 5) that
∑

i0,i−1,...,i−N

|ν(Ri0 ∩ T Ri−1 ∩ · · · ∩ T N Ri−N ) − pi−N πi−N i−N+1 · · · πi−1i0 |

≤ (N − 1)χN ≤ c10 N 2θn
10. (5.9)

2 Here and further on ν(A/B) means the conditional measure, = ν(A ∩ B)/ν(B), and we always set it
to zero whenever ν(B) = 0.
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The meaning of this is that the ν-measure is close to the Markov measure on
‘cylindrical sets’ of length N .

Another quantity characterizing a partition {R0, . . . , RI } of �, see (Ref. 10,
Sec. 3), is D = ∑I

i=0 ν(Ri ) diam(Ri ). In our case

D ≤ θn
3 + diam � · c8 Nθn

8 ≤ c11 Nθn
11. (5.10)

Next we recall necessary constructions of Ref. 10 related to the flow
�t :M → M, of which we always think as a suspension flow with the base
automorphism T : � → � and the ceiling function τ (x).

Let Rn,N be the above partition of �. For any x ∈ M let R(x) denote the
atom R ∈ Rn,N containing x . Now

τ̄ (x) = [ν(R(x))]−1 ·
∫

R(x)
τ (y) dν(y)

is the return time function τ (x) conditioned on the partition Rn,N .

Lemma 5.4. We have |τ (x) − τ̄ (x)| ≤ θ
n/2
3 for all x ∈ � \ R0.

Proof: Observe that τ (x) is Hölder continuous with Hölder exponent = 1/2 on
every connected component of � \ S1, then use Proposition 4.1 (b). �

Let δ > 0 be a small number, a ‘quantum of time.’ Put τ̂ (x) = (
[τ̄ (x)/δ] +

2
)
δ. The function τ̂ (x) on � approximates τ (x), but it is constant on every atom

of Rn,N and its values are integral multiples of δ. Denote by �̂t the suspension
flow with the base automorphism T : � → � and under the ceiling function τ̂ (x).
Let

M̂ = {(x, s): x ∈ �, 0 ≤ s < τ̂ (x)}
denote the phase space of this flow. It preserves the measure dµ̂ = cµ̂ dν × ds,
which is proportional to µ on M ∩ M̂, and 1 ≤ cµ/cµ̂ ≤ 1 + O(δ). The flow �̂t

was called a discrete version of �t in Ref. 10, we will call it a box flow here.
The map F̂ = �̂δ acts on M̂ and preserves the measure µ̂. Let Rn,N ,δ

denote the partition of M̂ into atoms R j × [sδ, (s + 1)δ), where R j ∈ Rn,N and
s = 0, 1, . . . , τ̂ (x)/δ − 1 for x ∈ R j . We denote the atoms of this partition by Xi ,
1 ≤ i ≤ Î = În,N ,δ , numbered in an arbitrary order.

For every atom Xi = R j × [sδ, (s + 1)δ) ∈ Rn,N ,δ we put R(Xi ) = R j (the
atom’s base) and s(Xi ) = s (the atom’s level). Over every ‘base’ atom R j ∈ Rn,N

there is a column of atoms Xi with R(Xi ) = R j and s(Xi ) = 0, 1, . . . , τ̂ (x)/δ − 1
for x ∈ Ri . The first atom in every column is called its bottom, and the last one its
top. The space M̂ consists of columns of atoms, each of height δ built over the
atoms of the partition Rn,N . The map F̂ shifts (elevates) every atom Xi , except the



A Stretched Exponential Bound on Time Correlations for Billiard Flows 41

top ones, one level up, so that F̂ Xi is another atom in the same column. Every top
atom breaks, under F̂ , into pieces which fall into some bottom atoms according
to the action of the map T on �.

The atoms Xi ∈ Rn,N ,δ constructed over rectangles R j have a 3D direct
product structure, we call them boxes. (Recall that R j ∈ Rn,N is a rectangle if
j ≥ 1.) ‘Bad’ atoms R0 × [sδ, (s + 1)δ) constructed over the ‘leftover set’ R0 are
called ‘nonboxes,’ they will not be of much use. The measure µ̂ restricted to any box
Xi is approximately a 3D product measure. Every box Xi = R j × [sδ, (s + 1)δ)
is a Cantor-like set enclosed in a ‘solid box’ Q(Xi ) = Q j × [sδ, (s + 1)δ), where
Q j is the solid rectangle corresponding to R j according to (5.1). The solid boxes
are closed domains bounded by six smooth hypersurfaces (faces), which include:
two u-faces and two s-faces (which project down to the u-sides and s-sides of
Q j , respectively), the top face Q j × {(s + 1)δ} and the bottom face Q j × {sδ}.
Solid boxes Q(Xi )’s have disjoint interiors and line up in columns that enclose the
columns of (Cantor) boxes Xi ’s.

For any t > 0 the map F̂ [t/δ] on M̂ approximates the time t map �t on M.
The two flows �t and �̂t have (slightly) different ceiling functions but the same
base map T : � → �. Therefore, for any point y = (x, s) ∈ M ∩ M̂ its images
�t y and �̂t y follow the same orbit, but with a time delay. We call this effect
asynchronism. Precisely, there is a �t (y) such that �t+�t (y) = �̂t y (in the case
�̂t y /∈ M the flow �t can be obviously extended to the point �̂t y). The value
�t (y) is, generally, small, unless the orbit crosses the ‘bad’ set R0 ∈ Rn,N . More
precisely, Lemma 5.4 implies

Lemma 5.5. For any t > 0, either the trajectory {�s y} crosses the ‘bad’ set R0

(i.e. enters a ‘bad’ atom of Rn,N ,δ) for some 0 < s < t , or we have

|�t (y)| ≤ c12
(
θn

12 + δ
) |t |. (5.11)

Next, for any t1, t2 > 0 such that t1 + t2 ≤ t we will define a Markov chain
approximating the map �̂t1+t2 . Its states {1, . . . , Î } will correspond to the atoms
Xi ⊂ M̂ and its stationary vector will be

P̂ = ‖ p̂i‖, p̂i = µ̂(Xi ). (5.12)

For r = 1, 2 consider a Markov chain with transition probabilities

π̂
(r )
i j = µ̂

(
X j/F̂ [tr /δ] Xi

)
. (5.13)

Both stochastic matrices �̂(r ) = ‖π̂ (r )
i j ‖ with r = 1, 2 preserve the probability

vector (5.12). It follows from (5.4) that

p̂min = min
i

{ p̂i } ≥ cµ̂δc4θ
2n
4 (5.14)
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and the total measure of ‘nonboxes’ is bounded by

µ̂
(∪R(Xi )=R0 Xi

) ≤ 2 τmax c10 Nθn
10. (5.15)

Also, for any integer η such that 2 < η < δ−1 let �(η) = ‖π (η)
i j ‖ be a stochastic

matrix defined by

π
(η)
i j =

{
1/(2η + 1) if R(Xi ) = R(X j ) and |s(Xi ) − s(X j )| ≤ η

0 otherwise
(5.16)

for all i �= j , and π
(η)
i i = 1 − ∑

j �=i π
(η)
i j for all i . Roughly speaking, under the

action of �(η) the mass of every atom Xi ∈ Rn,N ,δ is ‘smothered’ uniformly into
(2η + 1) neighboring atoms around Xi in the same column. We need this random
perturbation to compensate for the asynchronism between the flows �t and �̂t

described in Lemma 5.5.
Since the distribution (5.12) is uniform within every column of atoms of

Rn,N ,δ , it is also invariant under �(η).
Now, the Markov chain defined by the stochastic matrix �̂ = �̂(1)�(η)�̂(2) is

the one that will approximate the map �̂t1+t2 . It preserves the probability vector
(5.12), and its transition probabilities are

π̂i j =
∑

i1,i2

π̂
(1)
i i1

· π
(η)
i1i2

· π̂
(2)
i2 j . (5.17)

6. FINAL ESTIMATES

Let K1 = [t1/δ] and K2 = [t2/δ]. For any i, j we put

γ̂i, j =
∑

k

π̂ik π̂ jk

p̂k
≥

∑

k

∑

l1l2l3l4

(c)

× µ̂(T̂ K1 Xi ∩ Xl1 )µ̂(Xl3 ∩ T̂ −K2 Xk)µ̂(T̂ K1 X j ∩ Xl2 )µ̂(Xl4 ∩ T̂ −K2 Xk)

(2η + 1)2µ̂(Xk)µ̂(Xi )µ̂(Xl3 )µ̂(X j )µ̂(Xl4 )

(6.1)

where the summation in
∑(c) is taken over the quadruples (l1, l2, l3, l4) satisfying

the following ‘coupling’ condition: the atoms Xl1 and Xl3 must be in the same
column separated by no more than η − 1 other atoms, and the same must hold for
the atoms Xl2 and Xl4 .

We will only need a lower bound on γ̂i, j , and we will reduce its value by
excluding ‘bad’ atoms (‘nonboxes’) from the consideration as follows. First, we
set γ̂i, j = 0 if either Xi or X j is not a box (i.e. if one of them is constructed over
R0). Second, we assume that the summation

∑
k is taken over boxes Xk only. Third,
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we restrict the summation
∑c

l1l2l3l4
to quadruples {Xl1 , Xl2 , Xl3 , Xl4} of boxes only.

Forth, we reduce the sets T̂ K1 Xi ∩ Xl by excluding all the points x ∈ T̂ K1 Xi ∩ Xl

for which T̂ −r x belongs to a ‘nonbox’ for any r = 1, . . . , K1 (we do the same
for X j ). Similarly, we reduce the sets Xl ∩ T̂ −K2 Xk by excluding all the points
x ∈ Xl ∩ T̂ −K2 Xk for which T̂ r x belongs to a ‘nonbox’ for any r = 1, . . . , K2.

We will only use (6.1) when K1 � N/δ and K2 � N/δ. Now, after all the
above reductions, we can describe the intersections T̂ K1 Xi ∩ Xl as follows. First
of all, given a box X = R × [sδ, (s + 1)δ) and a u-subrectangle R′ ⊂ R, we call
the set X ′ = R′ × [sδ, (s + 1)δ) a u-subbox of X . Similarly we define s-subboxes.
Now due to Proposition 5.1 every intersection T̂ K1 Xi ∩ Xl that has a positive
measure is a u-subbox in Xl . Similarly, every intersection T̂ −K2 Xk ∩ Xl that has
a positive measure is an s-subbox in Xl .

Next, for any γ > 0 let

Q̂(γ ) =
∑

(i, j): γ̂i, j <γ

µ̂(Xi )µ̂(X j ) (6.2)

We note that all the above reductions of γ̂i, j only increased the value of Q̂(γ ).
We now fix a t > 1. Throughout, αi > 0 and κ > 0 are constants depending

on the billiard table D alone. The following proposition is proved in (Ref. 10,
Propositions 5.4 and 7.1):

Proposition 6.1. Let F, G be two generalized Hölder continuous functions on
M. For any t1, t2 > 1 such that t1 + t2 < t , any δ, η, γ > 0, and any partition
Rn,N such that N > κt , we have

|CF,G(t)| ≤ const· varα(F) varα(G) tα1γ −1

×
[
(ηδ)α2 + Dα3

n,N + χN + p̂min + Q̂(γ ) + p̂−2
min(1 − γ /80)

t
t1+t2

]

Now the results of the previous sections gives

Corollary 6.2. Under the same conditions,

|CF,G(t)| ≤ const· varα(F) varα(G) Nα4γ −1

×
[
(ηδ)α5 + θn

11 + δθ2n
4 + Q̂(γ ) + δ−2θ−4n

4 (1 − γ /80)
t

κ(t1+t2)

]

More specifically, the following theorem proved in (Ref. 10 Theorem 7.2)
based on Proposition 5.6 gives exact sufficient conditions for a stretched exponen-
tial bound on correlations.
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Theorem 6.3. Assume that there are constants γ, β1, β2 > 0, and 0 < θ13 <

θ14 < 1 depending on the billiard table D alone, such that for all large n with the
choice of N = n3, δ = θn

13, η = [θ−n
14 ], t1 = β1n, t2 = β2n we have

Q̂(γ ) ≤ c15θ
n
15. (6.3)

Then there is a constant a = a(D, α) > 0 such that for any generalized Hölder
continuous functions F and G

|CF,G(t)| ≤ const· varα(F) varα(G) e−a
√

t (6.4)

for all t > 0.

Theorem 6.3 follows from Corollary 5.5 if we set n = z
√

t with a sufficiently
small z > 0, see (Ref. 10, Sec. 7).

It remains to verify the conditions of Theorem 6.3. Our arguments follow the
scheme developed in (Ref. 10, Sec. 16) for Anosov flows, but in addition we have
to deal with irregularities caused by the billiard dynamics. The key element in our
scheme will be the estimation of (6.1) from below.

Let Xi = R j × [sδ, (s + 1)δ) be a box in M̂. Recall that each solid rectangle
Q j ∈ ϒn has sides shorter than θn

3 , see Proposition 4.1 (b). We pick θ13 > θ3 so that
δ = θn

13 � θn
3 ≥ diam Q j . Then each solid box Q(Xi ) will look like a ‘julienne’:

a relatively toll prism with a narrow base. Thus there will be an unstable fiber
Wu

i ⊂ Q(Xi ) stretching from one s-face of Q(Xi ) to the other. We fix such a fiber
Wu

i in every box.
Now let t > 0 and K = [t/δ]. As the map T̂ K approximates �t (see Sec. 5),

the image T̂ K Xi of the box Xi will, roughly speaking, stretch along the smooth
components �t (Wu

i ). Let Wu
t,i (H

k
τ ) denote the union of the smooth components

of �t (Wu
i ) satisfying the conditions (W1) and (W2) of Sec. 2 for some k = 1, 2

and |τ | < rH (note though that the index i has now a different meaning than in
(W1)–(W2)).

First we need to guarantee the existence and abundance of the components
in Wu

i,t (H
k
τ ). Recall that the curve Wi has length ≥ const· θn

7 . Now we set β1 =
2aH | ln θ7|. Then we can apply Corollary 2.6 to any pair of boxes Xi , X j and
respective unstable fibers Wu

i ⊂ Q(Xi ), Wu
j ⊂ Q(X j ) and the time moment t =

t1 = β1n. Thus, for every pair of boxes Xi , X j there is an s ∈ [0, sH ] such that

(a) the components of �t1 (Wu
i ) stretching along some unstable fibers W u

α ∈
H1

−s will make a subset in �t (Wu
i ) of relative measure ≥ dH ;

(b) the components of �t1 (Wu
j ) stretching along some unstable fibers W u

β ∈
H2

−s will make a subset in �t (Wu
j ) of relative measure ≥ dH .

Now let K1 = [t1/δ]. For every component W ′ ⊂ �t1 (Wu
i ) its preimage

�−t1 (W ′) is a subcurve of Wu
i ⊂ Q(Xi ) which delimits an s-subbox X ′ ⊂ Xi .
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Let X ′′ ⊂ X ′ consist of points x ∈ X ′ whose trajectories {�t x} do not cross the
bad set R0 at any time t ∈ (0, t1). Then the set T̂ K1 (X ′′) consists of u-subboxes in
some boxes Xl . These subboxes lie in the columns of solid boxes constructed over
solid rectangles Q ∈ ϒn that are crossed by the curve π�(W ′) ⊂ �.

More precisely, for every solid rectangle Q ∈ ϒn that is crossed by the curve
π�(W ′) the set T̂ K1 (X ′′) intersects at most one solid box Q(Xl) in the column over
Q. And if the intersection Xl ∩ T̂ K1 (X ′′) has positive measure, then it is a u-subbox
in Xl . Due to the asynchronism (Sec. 5), each u-subbox Xl ∩ T̂ K1 (X ′′) may be
shifted from the curve W ′ up or down the respective column; more precisely it
is located the distance ≤ �t1 = c12

(
θn

12 + δ
)|t1| from the curve W ′, due to (5.11).

We can choose θ13 > θ12, then we simply have �t1 = O(δ|t1|).
Thus there is a chain of u-subboxes {Xl ∩ T̂ K1 (X ′′)} lining up along the curve

W ′. The set ∪X ′′π�

(
T̂ K1 (X ′′)

)
is a (long and narrow) rectangle in � stretching

along the curve π�(W ′). We will only use the chains stretching along the com-
ponents W ′ fitting the description (a) above, i.e. along W ′ ⊂ Wu

t1,i
(H1

τ ). As there
may be many such components, there are just as many chains. Note, however, that
some chains may be rather ‘holey’, arbitrarily small (in measure), or even empty.
To ensure the abundance of ‘sufficiently dense’ chains we will utilize the ‘high
density’ properties of rectangles R ∈ Rn,N , see (5.3).

Summarizing, the set T̂ (Xi ) contains chains of u-subboxes stretching along
some unstable fibers W u

α ∈ H1
−s . Similarly, the set T̂ (X j ) contains chains of u-

subboxes stretching along some unstable fibers W u
β ∈ H2

−s . Due to Corollary 2.6,
there are stable fibers Ws

αβ linking the former chains with the latter chains, and
the distance from Ws

αβ to the corresponding chains is O(�t1 ). Furthermore, due
to property (H5) of the H-structures there are plenty of stable fibers Ws

γ ∈ H−s

around the linking fiber Ws
αβ .

Now we set β2 = g and t2 = β2n, where g was defined in the previous
section. Then for ‘almost’ every fiber Ws

γ (in the sense of (4.1)) its image
�t2Ws

γ ends up in a solid box Q(Xk) and its length is comparable to the
length of the maximal stable fiber in that box. Let K2 = [t2/δ]. Then the set
T̂ −K2 Xk will contain a chain of s-subboxes stretching along the curve Ws

γ and
staggering from it (up and down the corresponding columns of boxes) by less
than �t2 = c12(θn

12 + δ)|t2| = O(δ|t2|), again due to (5.11) and the assumption
θ13 > θ12. Note also that the projection of that chain down to � is a (long and
narrow) rectangle stretching along the curve π�(Ws

γ ).
We choose θ14 > θ13 and set η = [θ−n

14 ]. Then, on the one hand, ηδ <

(θ13/θ14)n is exponentially small and, on the other hand, ηδ � max{�t1 ,�t2}.
The rest of the argument closely follows (Ref. 10, Sec. 16). Let X̃ ζ1

i , ζ1 =
1, . . . , Zi , denote all the chains of u-subboxes in T̂ K1 Xi described above, i.e.
stretching along some curves Wu

α ∈ H1
−s . Similarly, let X̃ ζ2

j , ζ2 = 1, . . . , Z j , be

all the chains of u-subboxes in T̂ K1 X j stretching along some curves Wu
β ∈ H2

−s .



46 Chernov

For any pair ζ1, ζ2 consider the connecting curve Ws
αβ and all nearby stable fibers

Ws
γ ; then for any k denote by X̃1

k the chain of s-subboxes in T̂ −K2 Xk stretching
along some W s

γ (due to the results of the previous section, there can be at most
one such chain for any k).

Consider any pair of chains X̃ ζ1
i , X̃ ζ2

j and any chain X̃1
k described above.

The projections π�(X̃ ζ1
i ) and π�(X̃1

k ) may intersect each other inside at most one
solid rectangle Q ∈ ϒn . Hence, there is at most one column of solid boxes in M̂
in which both chains have ‘representatives,’ i.e. there is at most one u-subbox
Xl1 ∩ X̃ ζ1

i ⊂ Xl1 and at most one s-subbox Xl3 ∩ X̃1
k ⊂ Xl3 so that the boxes Xl1

and Xl3 belong to the same column (over Q). We put �ζ1
i,k = 1 if such boxes Xl1 and

Xl3 exist and |s(Xl1 ) − s(Xl3 )| < η and �
ζ1
i,k = 0 otherwise.3 Thus, every pair of

chains X̃ ζ1
i and X̃1

k has at most one representative in (6.1); in fact it does have one if
and only if �

ζ1
i,k = 1, according to the “coupling” condition on l1, l3 in the setup of

Eq. (6.1). Similar conclusions, of course, hold for every pair of chains X̃ ζ2
j and X̃1

k .
The following estimate easily results from the approximation of the measure

µ̂ by a product measure within boxes, cf. (Ref. 10, Lemma 16.1):

µ̂(T̂ K1 Xi ∩ Xl1 ) · µ̂(T̂ −K2 Xk ∩ Xl3 ) ≥ const· δ−1µ̂(X̃ ζ1
i )µ̂(X̃1

k )µ̂(Xl3 )

A similar estimate holds for any pair of chains X̃ ζ2
j and X̃1

k . This allows us to
‘decouple’ the indices i, j, k from l1, l2, l3, l4 in (6.1):

γ̂i, j ≥ ĉ1

∑

k

∑

ζ1,ζ2

�
ζ1
i,k�

ζ2
j,k

µ̂
(
X̃ ζ1

i

)
µ̂

(
X̃ ζ2

j

)
µ̂

(
X̃1

k

)

[(2η + 1)δ]2µ̂(Xi )µ̂(X j )

≥ ĉ1

∑

ζ1,ζ2

(
∑

k

�
ζ1
i,k�

ζ2
j,k

µ̂(X̃1
k )

[(2η + 1)δ]2

)
µ̂

(
X̃ ζ1

i

)
µ̂

(
X̃ ζ2

j

)

µ̂(Xi )µ̂(X j )
(6.5)

where ĉ1 > 0 is a constant (cf. (Ref. 10, Eq. (16.2)); also note that if the chain X̃1
k

exists, then µ̂(X̃1
k ) ≥ const· µ̂(Xk) due to (4.2)).

Next, we fix a sufficiently small constant ĉ2 > 0 and say that a pair of chains
X̃ ζ1

i , X̃ ζ2
j makes a ‘good couple’ if

∑

k

�
ζ1
i,k�

ζ2
j,k µ̂

(
X̃1

k

) ≥ ĉ2[(2η + 1)δ]2. (6.6)

Recall that �
ζ1
i,k = �

ζ2
j,k = 1 whenever the ‘stable’ chain X̃1

k is ηδ-close to both

‘unstable’ chains X̃ ζ1
i and X̃ ζ2

j . Those ‘unstable’ chains stretch along some

3 The difference |s(Xl1 ) − s(Xl3 )| − 1 is the number of boxes between Xl1 and Xl3 in the corresponding
column over Q.
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fibers Wu
α ∈ H1

−s and Wu
β ∈ H2

−s , respectively, and there is a ‘connecting’ stable
fiber Ws

αβ . Due to Lemma 2.2 every stable fiber Ws
γ passing through the ηδ-

neighborhood of the point Wu
α ∩ Ws

αβ will pass through the Cηδ-neighborhood
of the point Wu

β ∩ Ws
αβ , where C > 0 is a constant. And the property (H5) of the

H-structures guarantees the abundance of such stable fibers, thus their union has
volume ≥ const· (ηδ)2. For this reason one might expect that the union of ‘stable’
chains X̃1

k that are δη-close to both ‘unstable’ chains X̃ ζ1
i and X̃ ζ2

j has volume

≥ const· (ηδ)2 as well, which would obviously imply (6.6). We will argue below
that this is indeed true for ‘typical’ (if not all) pairs of chains.

For any ‘good couple’ of chains X̃ ζ1
i , X̃ ζ2

j the interior sum in (6.5) is bounded
below by ĉ2. We say that a pair of boxes Xi , X j makes a ‘good couple’ if at least
50% (in terms of measure) of their chains X̃ ζ1

i and X̃ ζ2
j make good couples. Now

by Corollary 2.6 and the ‘high density’ property (5.3) it follows that

∑

ζ1

µ̂
(
X̃ ζ1

i

) ≥ 1

2
dH µ̂(Xi ) and

∑

ζ2

µ̂
(
X̃ ζ1

j

) ≥ 1

2
dH µ̂(X j ).

Thus, for every ‘good couple’ of boxes Xi , X j we have

∑

ζ1,ζ2:(6.6) holds

µ̂
(
X̃ ζ1

i

)
µ̂

(
X̃ ζ2

j

) ≥ 1

8
d2

H µ̂(Xi )µ̂(X j ),

and so γ̂i, j will be bounded below by γ : = ĉ1ĉ2d2
H/8 > 0.

It remains to verify that pairs of boxes that do not make ‘good couples’ are
‘rare’, in the sense that they satisfy (6.3). For Anosov systems (Ref. 10, Sec. 16) all
pairs of boxes make good couples. But the billiard dynamics is far less regular and
boxes may fail to make ‘good couples’ for several reasons. First, some fibers Ws

γ

may not belong to the set Wn,−s , cf. (4.1), then there may not be enough ‘stable’
chains X̃1

k around to ensure (6.6). Second, recall that our chains X̃ ζ1
i , X̃ ζ2

j , and X̃1
k

are Cantor-like ‘holey’ structures. If the ‘holes’ are too wide, then π�(X̃1
k ) may

not intersect either π�(X̃ ζ1
i ) or π�(X̃ ζ2

j ), in which case either �
ζ1
i,k = 0 or �

ζ2
j,k = 0

(or both).
To assess losses caused by ‘holes’ in the chains and ‘bad’ fibers Ws

γ we can

use the overall exponential bound on ‘bad’ atoms (‘nonboxes’) in M̂, cf. (5.15),
the bound on the relative measure of the union of ‘holes’ in every box, cf. (5.3),
and the bound on the measure of the union of ‘bad’ stable fibers Ws

γ /∈ Wn,−s , cf.
(4.1). Loosely speaking, all these bad phenomena occur with exponentially small
probability. Thus for ‘typical’ pairs of boxes Xi , X j the losses are exponentially
small and we get our lower bound γ̂i, j ≥ γ ; the total measure of ‘nontypical’
pairs Xi , X j satisfies an overall exponential bound (6.3) with some θ15 > 0. The
verification amounts to a straightforward (but tedious) estimation, which we leave
out.
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Thus all the conditions of Theorem 6.3 are met, hence Theorem 1.1 is proved.

APPENDIX

Here we prove Proposition 2.4. Our argument is based on the mixing property
of the flow �t ; it closely follows that of (Ref. 6 Theorems 3.12 and 3.13), see a
more detailed presentation in (Ref. 13, Chapters 5 and 7), only sketch it here.

First, there is a d0 > 0 and are a finite number of boxes of positive measure,
X1, . . . , X K ⊂ M such that any fiber Wu of length ≥ d0 fully crosses the solid
box Q(X j ) (i.e. crosses both s-faces of it) for some j = 1, . . . , K ; in fact we can
guarantee that Wu crosses Q(X j ) somewhere in its middle half (with respect to
the µ measure). The boxes X j are build over certain rectangles R j constructed in
Ref. 6, see also (Ref. 13, Lemma 7.87), which we can assume to have high density,
say

ρs(R j ) > 0.99 (6.1)

for every j . We also assume that the height of every solid box Q(X j ) is less than
sH/200.

Now consider the set K1 = π�(V1) ⊂ �. Fix a subset K̃1 ⊂ K1 such that
ν(K̃1) > 0 and there is a δ0 > 0 such that for any stable fiber W s of the billiard map
T with length < δ0 and the s-SRB measure νs on it we have νs(W s ∩ K1) > 0.99
whenever W s ∩ K̃1 �= ∅ (the existence of K̃1 is proved in (Ref. 6, page 68)). Then
fix a subset Ṽ1 ⊂ V1 such that π�(Ṽ1) = K̃1 and on any surface �[sα−sH ,sα ](Wu

α ∩
B1), see (H4), the set Ṽ1 intersects only the bottom 1% of it, i.e. the subsurface
�[sα−sH ,sα−0.99sH ](Wu

α ∩ B1).
The mixing property of �t ensures that there are tH > 0 and d̃H > 0 such that

for all t > tH we have µ(�t X j ∩ Ṽ1) > d̃H for every j = 1, . . . , K . An obvious
lifting of the arguments in the proof of (Ref. 6, Theorem 3.13) from � to M shows
that there are components Wu

t,i of �tWu such that

(i) dist
(
W u

t,i ,�
[−sH /100,sH /100]Ṽ1

) ≤ C�λt
�;

(ii) the curve W u
t,i intersects the ball B1 and sticks out of it by at least L H in

both directions;
(iii) the νu

t -measure of the union of those components is greater than some
dH > 0.

In fact the property (ii) follows from (6.7) and our construction of Ṽ1. Now,
Proposition 2.4 readily follows from (H4).
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